

Winning in Ontario's Electricity Market

Strategies for Combatting Global Adjustment and Earning Revenue from Ontario Energy Programs

Mitigating Global Adjustment Costs

- Companies need to take a comprehensive look at this opportunity to reduce their electricity costs
 - Understanding GA
 - Understanding and Determination of Customer Classes
 - Evaluating the Opportunity
 - Forging a Plan
 - Reacting in Real Time
 - Additional Opportunities

Global Adjustment Primer

Why does Ontario have a Global Adjustment (GA) cost?

- ➤ Hourly price is set by the market (Efficient Dispatch)
- ➤ Contracted generators need to be kept "whole"

Consumers <500 kW Pay for GA as part of their hourly rate

Customer Classes

- Consumers Greater than 5 MW Demand are by default Class A Consumers.
- Consumers between 1MW and 5MW are Class B consumers but can opt into Class A by June 15 each year for the adjustment period starting July 1
- Consumers between 500 kW and 1 MW with certain NAICs codes can opt into Class A (manufacturing and greenhouses)

What is the Value of GA?

- Class A Consumers pay their share of the GA based on their load during the 5 highest peak hours of the year. (Demand based allocator)
 - ~\$525,000/MWyr (6.0 cents/kWh on a 100% annual load factor)
- Class B Consumers pay the remainder of the GA pot each month based on their total energy consumption in the month (Energy Based allocator)
 - ~ 10.0 cents/kWh in 2017
- The difference for going to Class A is at least 2.0 cents/kWh

So, I'm Class A. Now what?

- Gather plant information
 - Historical data
 - Energy Management Information System
- Determine department/equipment costs to operate
 - IESO website to determine GA value
- Interview the department heads
 - What can be curtailed? How long without losing sales? Cycle? Safety First!
 - Can we build inventory?
 - Will staff work overtime? Evenings? weekends?
- Estimate the savings opportunity
- Develop Targets
 - Aggressive?, Conservative?
 - Formulate a safe curtailment plan

Understanding the Opportunity

Equipment	Load (kW)	GA Cost		% Curtailable	Curtailable Load (kW)	Savings	
Load A	240	\$	126,000	0	0	\$	-
Load B	190	\$	99,750	50	95	\$	49,875
Load C	165	\$	86,625	50	82.5	\$	43,313
Load D	150	\$	78,750	100	150	\$	78,750
Load E	80	\$	42,000	0	0	\$	-
Balance of Plant	240	\$	126,000	25	60	\$	31,500
Total	1065	\$	559,125		387.5	\$	203,438

Ok, so there is an opportunity. Now What?

- Determine what Market/Facility information is required to make informed curtailment decisions
 - Energy Management System in place?
 - Capital requirements
 - Train People should be dedicated individual
 - What is our threshold?
 - Monitor Websites IESO, Weather Network, etc
 - Take Curtailment Action
 - Monitor Facility Reduction in real time
 - 3rd Party Service/Software
 - Cloud based
 - Rely on outside help to determine when to take action
 - Monitor reductions in real time
 - Generate Reports to indicate success

Real Time Visibility

Additional Opportunities to reduce Demand

- Distributed Generation
- Behind the meter solutions
- Typically 3rd party ownership to reduce risk (capital, implementation and operational)
- Shared Savings
- Battery
 - 3-4 hours of backup Battery
 - Risk of missing CP's as Ontario load gets flatter and flatter
- Gas Generation
 - No limit on # of hours
 - Lower risk of missing CP hours
 - 2MW genset can deliver an additional \$260k/year GA savings to the customer

Additional Opportunities to Reduce Costs

Demand Response

- Up to an additional \$50,000/MWyr is available for participation in Ontario's Demand Response Program
- Summer/Winter Programs
- Loads can participate directly with the IESO in the DR Auction
 - Prudential Risk
 - Performance Risk
 - Management Risk (metering, registration)
- 95% of loads participate through Aggregators
 - Reduced risk
 - Metering Feedback
- Class B Consumers can participate through Aggregators

Additional Opportunities

- Peak Demand Trimming (Network and Connection Charges)
- Load Shifting On/Off Peak
- Dispatchable Load Operating Reserve Opportunity
- Energy Efficiency IESO/LDC programs

Conclusions

- The vast majority of facilities have opportunities to reduce costs
- Installing an Energy Management Information System is critical and will have a quick payback
- Help is available from your LDC; 3rd parties; Capital, Advice, Services
- Doing a comprehensive analysis will likely flush out some additional unexpected savings

